Research Policies on Technology-Enhanced Learning: Perspectives from Singapore

Chee-Kit Looi
National Institute of Education
Singapore
Where is Singapore?

- Singapore’s educational system is recognised worldwide for its rigor.
- Trends in International Mathematics and Science (TIMMS), constantly rank students in Singapore as top performers in mathematics and science.
Need for ICT in Ed Masterplans

- Human capital development – key national focus

- Alignment of economic, manpower & education policies

- ICT in Ed:
 - Preparation for knowledge-based environment
 - Enhance learning experiences
ICT in Ed Masterplan Journey

Building the Foundation

Seeding Innovation

Strengthening & Scaling

1997

2003

2009

Slides 4-12 courtesy of Director, ETD, MOE, Singapore
Core ICT Training for all teachers

ICT Infrastructure & Support for all schools

Educational software & resources for relevant subjects

1997: Masterplan 1
Building the Foundation

ICT became an accepted tool for teaching & learning
2002: Masterplan 2
Seeding Innovation

Baseline ICT Standards for all

Established Baseline ICT Standards for pupils

Generate innovative practices through schemes

Gave autonomy through devolved ICT funds

FS@SG 5% schs

LEAD ICT Schools 15-20% schs

Remaining Schools

Table C: Integration of ICT in Different Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>English</th>
<th>Mathematics</th>
<th>Science</th>
<th>Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICT Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Info-seeking</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Data Communication</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT-as a Tool</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ICT-as an artifact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IC...
Examples of ICT Use in Schools

- **Learning language using podcasts**

- **Using broadcast technology for English**

- **Mobile Learning**
 - With PDAs and data loggers

- **Role-playing in Second Life**

- **Using blogs and e-portfolios to reflect on their learning**
Future Schools

- School-based curriculum for engaged learning & 21st Century skills
- School-wide innovation of learning & teaching models using ICT/IDM
- R&D to develop understanding & depth
- Partnership with industry
Lessons Learnt

1. The need to bridge the gap between ICT competencies and effective teaching

2. The need to balance between centralisation and autonomy
‘Curriculum 2015’ Student Outcomes

<table>
<thead>
<tr>
<th>Confident Person</th>
<th>Self-directed Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinks independently</td>
<td>Takes responsibility for own learning</td>
</tr>
<tr>
<td>Communicates effectively</td>
<td>Questions, reflects, perseveres</td>
</tr>
<tr>
<td>Has good inter-personal skills</td>
<td>Uses technology adeptly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concerned Citizen</th>
<th>Active Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is informed about world and local affairs</td>
<td>Exercises initiative and takes risks</td>
</tr>
<tr>
<td>Empathises with and respects others</td>
<td>Is adaptable, innovative, resilient</td>
</tr>
<tr>
<td>Participates actively</td>
<td>Aims for high standards</td>
</tr>
</tbody>
</table>

mp3 Goal

Students develop competencies for self-directed and collaborative learning through the effective use of ICT as well as become discerning and responsible ICT users.
Necessary Transformation

1st Masterplan
Build Foundation

Curriculum, & Assessment
~ ICT supporting curriculum

Professional Development
~ Core training for all teachers and school leaders

Research & Development
~ Spearheading R&D efforts in collaboration with industry & schools

Infrastructure for Learning
~ Central provision to equip all schools
~ One-size-fits-all

2nd Masterplan
Seed Innovation

~ ICT integrated into curriculum & assessment
~ Differentiated Prof Development
~ Consultancy to school leaders
~ Consultancy to school leaders
~ Seeding innovation in schools
~ Seeding innovation in schools

3rd Masterplan
Strengthen & Scale

~ ICT embedded into syllabuses & teaching guides
~ Professional Learning Communities
~ Spearheading R&D efforts in collaboration with industry & schools
~ Spearheading R&D efforts in collaboration with industry & schools
~ Translating research to influence classroom practices
~ Translating research to influence classroom practices
~ Closer alignment to curriculum changes and schools needs
~ Closer alignment to curriculum changes and schools needs
mp3: From Ideas to Practice

- Ideas creation to Proof-of-concept
 - IDM in Education R&D

- Translation
 - Prototype development
 - Prototype research
 - Future Schools 2.0

- Scaling
 - ICT Mentor, PD framework, ICT connection
Our Research Work in Singapore

LSL set up in 2005 with MOE funding

To foster deep student learning with technology-enabled pedagogical practices for cultivating 21st century knowledge and skills through learning sciences research in Singapore schools

Virtual Science Inquiry
Argumentation in 2nd Life
Mobile Learning
Goals and Deliverables

Long Term Goal: Scalability and Sustainability

- Teacher Education Models
- Alternative Pedagogies
- Conditions and Designs for Innovation
- Making Deep Learning Happen
- Alternative Assessments
- Change Strategies
- Teacher Resources
- Learning Environments

Create Point-at-Able Models of Practice
Work with Partner/Prototype Schools
What Kind of Research is Needed?

- Learning Sciences research to understand how students learn
- **School-based Design Research** to create point-at-able models
- Plan for sustainability and scalability
- Translational research
- Build capacity in teachers to do action research
Design Research

DESIGN RESEARCH FOR BRIDGING PEDAGOGY

Cycle 0 (pilot)
- Intervention Package
 - Instructional lessons/activities
 - Teacher moves
 - Software
 - Professional Development

Cycle 1
- Implement
- Collect Data
- Develop
- Evaluate

Cycle 2
- Collect Data
- Develop
- Evaluate
- Redesign

Cycle 3 and so on...
- Collect Data
- Develop
- Evaluate
- Redesign

End Product
- Comprehensive Instructional Package
- Evidence of what works & how it works
- Deeper understanding of teaching & learning of algebra

Initial Inputs to Design
- Prior research findings
- Pedagogical experts' input
- Teachers' input
- Learning sciences perspectives
- Math education
- Theoretical framing

Design Principles
- Modelling
- Scaffolding
- Automated Feedback
- Mediation for Classroom / Peer Discourse
the Big Challenges

- Gap between articulated policy goals and *what actually happens in classrooms*
- Alignment is key between curriculum, pedagogy and assessment
Bridging Research to Practice: Challenges to Innovations in Schools

- Research communities and schools (practice communities) are 2 separate ecologies
- Innovation needs systemic change (and alignment!)
- How to sustain research innovation in the schools involved in the research?
- How to “translate” to more classes/schools?
What can we do as a Research Lab?

- Build up capacity of researchers and dialogue with stakeholders --- MOE, school leaders, pre-service teachers, in-service teachers, parents, etc

- Recognize synergies across projects for models of
 - Methodology and research design
 - PD
 - Assessment
 - Theory improvement
 - Sustainability and scalability
The End

Contact me at: cheekit.looi@nie.edu.sg